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Abstract

In many cases, optical tracking systems do not have cooperative beacons avail-

able. This is particularly true for the case involving tracking a laser illuminated target

such as a missile seeker head, where the object of interest is an extended source. Fur-

thermore the extended source is often observed in the presence of noise such as shot

and speckle noise as well as atmospheric turbulence which further degrades the sig-

nal. This research effort presents the evaluation of an existing algorithm based on the

maximum-likelihood technique for tilt estimation in the presence of extended sources

and speckle noise, with particular application to the image motion tracking problem.

Comparison is made between the performance of traditional centroiding algorithms

and the existing projection-based correlation algorithm in simulation. The Maximum

Likelihood Estimator using projection-based correlation is shown to offer improved

performance in the motion tracking problem.
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Evaluation of Performance

of a Maximum Likelihood Estimator

for Tracking Purposes in the Presence of Speckle Noise

I. Introduction

This research aims to evaluate a tilt estimation algorithm for tracking purposes that

performs well in the presence of speckle noise. In particular, it addresses the type

of noise produced when coherent light is reflected off an optically rough surface, as

distinct from the twinkling viewed by astronomers which is caused by atmospheric

turbulence. Maximum Likelihood Estimation (MLE) algorithms have been shown to

give good performance compared to traditional centroiding in the presence of noise.

An MLE algorithm, used in the presence of speckle noise, is investigated in simulation.

Its performance in terms of tilt error is compared to that of traditional centroiding.

1.1 Motivation

In the field of Infrared (IR) counter measures, two basic systems are employed:

a detection and tracking system, and a jamming system. On airborne platforms this

leads to several limitations. Firstly, space and weight are at a premium on most

platforms especially those of the fighter type. Secondly, with the detection system

also providing tracking information, its ability to detect and process new threats can

be limited. Thirdly, a large jamming beam foot-print is often required, as the location

in space of the threat to be jammed is not known to any useful degree of precision.

This is due to the fact that the exhaust plume of the threat is usually the element

tracked, not the threat sensor itself. These limitations can be partially overcome

if the tracking part could be integrated with the jamming system. The physical

size of the systems would most likely be smaller, particularly the detection element.

Once detection is accomplished and the threat has been handed over to the jamming

1



www.manaraa.com

system, the detection system can revert to searching for new threats. Finally, if some

additional threat information is known, the spatial location of the threat sensor to

be jammed can be computed to a reasonable degree of accuracy, allowing a smaller

beam footprint and providing increased power density in the jamming beam.

Imaging wavefront sensors, such as the well known Shack-Hartmann, currently

used in the adaptive optics (AO) field to provide wavefront subaperture tilt estimates,

can be used to provide estimates of global tilt. This global tilt can be used to provide

information on a source’s position relative to the optical axis of the tracking sensor.

When this information is fed to a tracking system, the sensor can be adjusted such that

the source is kept on the optical axis. When this information is also provided to the

illuminating source in the case of an IR jamming system, the efficiency of the jammer

can be much improved. Most sensors employ some form of tilt estimation algorithm to

derive an estimate of the global tilt parameter. These algorithms generally perform

well in scenarios where the object of interest (OI) occupies a small portion of the

overall imaged scene and is the single brightest feature in it, and there is relatively

little to no noise of any type. When the first conditions is not met, ie. the OI occupies

a significant portion of the scene, the OI is termed non co-operative. This is the case

for real-world tracking scenarios involving coherent illumination, where there is also

noise present from the reflected light, the scene background, and from within the

sensor itself.

Few, if any, existing algorithms have been shown to perform well in the pervi-

ously mentioned scenarios. An algorithm that performs well in the presence of such

limiting factor would provide an increased level of tracking accuracy in real-world

situations.

1.2 Goals

The primary objective of this research is to evaluate the performance of a

maximum-likelihood tilt estimator in the presence of noise, particularly speckle. The

research focuses on the performance of existing tilt estimation algorithms in applica-

2
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tion for which they were not originally intended. To satisfy this goal, the research

investigates the performance of an existing algorithm in ideal scenarios as well as

in non-ideal scenarios. The ideal scenarios are used to establish a baseline for per-

formance of each algorithm. Non-ideal effects are introduced, and the change in

performance of each algorithm is examined.

1.3 Thesis Outline

This thesis meets the goals through detailed analysis and simulation. Chapter II

examines the theory behind the important concepts of extended sources and speckle

noise, including the statistics of speckle, upon which this research is based. It also

examines several of the existing techniques used to estimate tilt in optical wavefront

sensing. Chapter III includes a detailed explanation of the structure of the simula-

tions used and reasoning for any assumptions made. Chapter IV presents the results

of the simulation with Matlab
r as well as offering reasoning for the results. Chap-

ter V provides concluding remarks as well as possible future research opportunities in

extending this topic.

3
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II. Theory and Review

This work builds on previous research, and moreover, this section reviews previous

work in the field of tilt estimation with extended sources. It begins with the

basic theory of extended and point sources and then explores other important and

relevant areas that are the foundations of this research.

2.1 Point and Extended Sources

While point sources seem at first glance to be the simplest beacons to use in sim-

ulation, this is in fact not entirely true. If one were to accurately model a point source,

it would have to be represented as a Dirac delta function in space. It has infinite band-

width, which is clearly not possible in simulation because of a discretely sampled grid

and impossible in a real-world situation. Firstly we attempt to define the physical

differences between point and extended sources. When trying to characterize point

and extended sources, it is often helpful to start with the geometrical perspective. A

true point source at a finite distance emits divergent light in all directions, while at

very large distances light from a point source can be considered collimated [12]. An

extended source produces overlapping pencils of rays called beams from each object

point. Figures 2.1 and 2.2 illustrate the spreading effect of an extended source.

A point source can be thought of in a number of ways. One is to simply refer

to it as resolved or unresolved, in that it either occupies more than one pixel in the

image sensor or not. However, this may not capture the physics of any propagation

involved. Another is an idealized source whose dimensions are very small compared

to the viewing distance, i.e. the product of the lateral source dimensions should be

very much smaller than the distance to the detector or observation screen squared

and the included solid angle is very small. Hence we can define a point source as

shown Figure 2.3.

Radiant energy emitted by a point source is referred to as isotropic, i.e. it

radiates equally in all directions. The surface area through which the radiation passes

is 4πr2 at a distance r from the source. If a detector of area A is placed a distance r

4



www.manaraa.com

Object points

Figure 2.1: Light rays from a near extended object.

To distant object

Figure 2.2: Light rays from a distant extended object.
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Source

dA

dB

r

2rdAdB <<

Figure 2.3: Defining a point source.

from the source, the detector subtends a solid angle Ω = A/r2. The radiant intensity

can be expressed by

Ie =
φe
Ω
, (2.1)

where φe is the radiant flux, defined as the measure of the total power of electro-

magnetic radiation (including infrared, ultraviolet, and visible light) landing on a

particular surface. The measured intensity remains constant as the detector moves

away from the source. However, we can rarely neglect diffraction effects and the mea-

sured intensity takes the form of Iθ = Iθ(0) cos3 θ from Ref. [17], illustrated in Figure

2.4.

Extended sources require special treatment to properly measure corresponding

flux and surface brightness. This arises from the complex scattering of incident light

reaching the sensor focal plane array. The images of extended sources have more

extended wings than those of point sources. Photons that would normally be scattered

out of the point spread function (PSF) aperture used to measure a point source

are instead captured when an extended source is present. Extended sources can be

considered collection of point sources as suggested in Ref. [19]. For an extended source,

the point source model needs to be expanded to account for the area of the source

and the fact that the radiant intensity may vary across this area. If we consider the

6
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Figure 2.4: Variation in irradiance from a point source on a detector at distance r

extended source to comprise equally spaced point sources as shown in Figure 2.5(a),

then the irradiance per unit area Le can be expressed as

Le =
φe
AΩ

, (2.2)

where φe is the radiant flux of the source, A is the area of the source and Ω is the

solid angle subtended by the detector at the source. If the same extended source is

now viewed at an angle θ as shown in Figure 2.4, then the spacing between point

sources is shortened in one direction and the area A is reduced by a factor cos θ as in

Figure 2.5(b). Thus A is replaced by dA cos θ in Eq. (2.2) leads to

Le(θ) =
Le(0)

cos θ
, (2.3)

where Le(0) is the radiance at θ = 0. Unfortunately with Eq. (2.3) we are about

7
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dA

d
B

(a)

dA

d
B cos�

(b)

Figure 2.5: Extended source considered as a collection of point sources when
viewed(a) at normal to the source and (b) from an angle θ to normal.

to violate a few physical laws in that it suggests that as θ decreases the radiance

increases, eventually to infinity at θ = π/2. One way to avoid this is to choose an

extended source whose radiance is independent of viewing angle. This is possible if

the radiant intensity falls off as cos θ which compensates for the effect in Eq. (2.3),

which now becomes

le(θ) = cos θ
φe
AΩ

. (2.4)

The extended source can be thought of as a lambertian source as shown in

Figure 2.6 whose intensity varies as the cosine between the normal and the direction

of propagation. It should be noted here that most practical sources do not strictly

meet this requirement, though many are close enough to make the approximation

valid. Now to calculate the irradiance at a distance r from the extended source, we

note the irradiance produced by an element dA of the source is given by Eq. (2.2)

which when substituted into Eq. (2.1) and after a bit of manipulation, gives the

irradiance

Ee =
LeA

r2
= LeΩ. (2.5)

8
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Figure 2.6: Lambertian source where the intensity reduces as the cosine of the angle
between the normal and the direction of propagation.

The question then is, when is it no longer accurate to approximate a physical source

by a point source? If we take the circular source irradiance as

Ep =
πa2L

r2
, (2.6)

where a is the source radius and r is the detector distance, the extended disk source

irradiance is

Ee =
πa2L

a2 + r2
. (2.7)

Now if we desire to have less than 1% error by approximating the disk as a point then

Ep −Ee
Ee

≦ 0.01 ⇒ a ≦ 0.01 × r (2.8)

This is the basis for the “5 times” rule of thumb, which is the observation distance

should be at least five times the largest source dimension. The reader can compare this

to the definition presented earlier in this section. The physical differences between

9
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extended and point sources reduce wavefront sensing accuracy by various degrees

depending on the sensor used.

2.2 Atmospheric Turbulence

Random variations in the temperature and pressure of the earth’s atmosphere

alter the the refractive index of the air, both spatially and temporally. Optical waves

propagating through these variations are distorted. This distortion is known as tur-

bulence. Turbulence affects all optical systems which propagate light through long

atmospheric paths. There have been many theories and much work done on char-

acterizing the effects of turbulence on optical propagation. A statistical analysis is

necessary as it is not feasible to describe exactly the refractive index at all points in

space and time. The most widely accepted theory, due to its consistency with obser-

vation, is that put forward by A.N. Kolmogorov [11]. His theory centers on randomly

distributed pockets of air, called eddies, of varying sizes and temperatures causing the

random variations in the refractive index of the atmosphere. From this, a refractive

index profile of the section of atmosphere in question can be developed.

Kolmogorov suggested that turbulent flow, governed by the Navier-Stokes equa-

tions, could be described by the transfer of kinetic energy from large eddies into smaller

eddies. The average size of these eddies being designated the outer scale L0 for the

large eddies and the inner scale l0 for the smaller eddies. L0 can range from the height

above ground at lower altitudes up to hundreds of meters at higher altitudes. l0 ranges

from a few millimeters at low altitudes to centimeters higher up. The range of sizes

between inner and outer scales is known as the inertial subrange, and Kolmogorov

assumed that eddies within this range are statistically homogeneous and isotropic. It

is, however, more accurate to say that properties such as refractive index and wind

velocity have stationary increments. Kolmogorov determined that the average speed

v of turbulent eddies is related to their scale size r via

v ∝ r1/3. (2.9)

10
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Kolmogorov’s analysis of potential temperature (linearly related to regular temper-

ature T ) led to an expression for the refractive index at a point in space r given

by

n(r) = µn(r) + n1(r), (2.10)

where µn(r) is the slowly varying mean of the refractive index value, and n1(r) is

the deviation of the index from its mean value. This creates a zero-mean random

process n1(r). At optical wavelengths considered here, the refractive index of air can

be approximated by

n(r) ∼= 1 + 7.99 × 10−5P (r)

T (r)
for λ = 0.5µm, (2.11)

where λ is the optical wavelength, P is the pressure in millibars and T is temperature

in Kelvin. Then assuming each eddy has relatively uniform pressure, the variation in

the refractive index is given by

dn = 7.99 × 10−5 dθ

T 2
. (2.12)

Variation in refractive index is directly proportional to the variation in potential

temperature and as such, the refractive index structure function follows a similar

power law to Eq. (2.9):

Dn(r) = C2
nr

2/3 for l0 < r < L0, (2.13)

where C2
n is the refractive-index structure function parameter, in m−2/3.

It is often necessary to have a spectral description of the fluctuation in refrac-

tive index. The Kolmogorov power spectral density Φn(κ) can be computed from

Eq. (2.13) and is given by

Φn(κ) = 0.033C2
nκ

−11/3 for
2π

L0

< κ <
2π

l0
, (2.14)

11
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where κ = 2π
(

fx̂i + fy ĵ
)

is the angular spatial frequency in rad/m.

Through the application of Rytov theory (Maxwell’s equations and perturbation

theory), the field can be written as

U(r) = U0(r) exp[ψ(r)], (2.15)

where U0(r) is the vacuum solution (n1 = 0) of Maxwell’s equations and ψ(r) is the

complex phase perturbation. Successive perturbations of the form

ψ(r) = ψ1(r) + ψ2(r) + . . . (2.16)

can be used to compute statistical moments of ψ which in turn are used to compute

statistical moments of the field. For example, turbulent phase screens such as those

used in simulation in Section 3.2.4 are realizations of ψ(r).

Rytov theory yields many parameters that can be used to characterize optical

impact of turbulence. Two of these are the coherence diameter r0 and the isoplanatic

angle θ0. both of these parameters are computed from the integrated moments of the

structure parameter C2
n. C

2
n is the measure of the local turbulence strength at a point

in space, and is a function the propagation distance ∆z. Functions of C2
n, known as

structure functions, describe the local turbulence along a particular optical path. The

coherence diameter r0, also known as the Fried parameter, is given approximately by

Dψ(r) = 6.88

(

r

r0

)5/3

. (2.17)

Values of r0 are typically 5-10 cm at visible wavelengths. The isoplanatic angle θ0 is

defined as the angle between two point sources for which the mean square phase differs

by 1 rad2. It may also be considered as the largest field angle over which the optical

path through the turbulence does not vary significantly from the on-axis optical path

12
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through the turbulence. Values for θ0 at visible wavelengths are typically 5− 10µrad,

looking directly overhead.

If the turbulence encountered by the beam is strong, then the beam from an

extended source wanders over time. If a coherent source such as a laser is used

to illuminate a rough target, the beam also exhibits random effects which include

strong intensity and phase variations. These variations create challenging scenarios

for wavefront sensing. Light rays arriving at a sensor aperture, such as a Shack-

Hartmann wavefront sensor, from different points of an extended source have traveled

significantly different atmospheric paths. Light corrupted by aberrations obtained

from these different paths arrives superimposed at the aperture where it is used in

the sensing system. Considering the light is already superimposed and has most

probably arrived from many different directions, often separated by more than θ0, the

isoplanatic angle, given by ,

θ0 =
(

1.09k2C2
nL

8/3
)5/3

, (2.18)

for a constant C2
n path, or from points separated by distances exceeding r0, the co-

herence diameter, given by

r0,sw =



0.423k2

∆z
∫

0

C2
n(z)(

z

∆z
)5/3dz





−3/5

, (2.19)

conventional wave-front sensing processes do not estimate the the same wave-front

error that would be due to a point source. In many cases the error in estimation is

significant and severely degrades the sensor’s ability to correctly estimate the wave-

front. Nominally, when an extended source is present, the intensity pattern in the

pupil of the observation system should be a lower-contrast, blurred version of the

intensity pattern expected of a point source.

Often a Hartmann-type sensor is used for wavefront sensing. The presence of

an extended source in this case also creates some interesting effects. If the complex

13
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Figure 2.7: Typical Hartmann lenslet array.

transmittance of a Hartmann lenslet array such as the one shown in Figure 2.7 is

given by

tH(xP ) =
∑

S

exp[−j k
2fl

(xP − xs)
2]rect

(

xP − xs
d

)

, (2.20)

where S is the number of sub-apertures, xs is the center of the sth sub-aperture, fl

is the focal length, d is the side dimension of the lenslet and k is the wave number.

When a field due to an extended source falls on a Hartmann array, due to the nature

of the light from the extended source, some field segments may overlap onto adjacent

sub-apertures. The resultant intensity is derived in Ref. [21] and is shown here as

IH(xH , t) =

∫

xP

∫

x′P

∫

xT

dxPdx
′
PdxThNF (xP , xH)h∗NF (x′P , xH)tH(xP )t∗H(x′P )

× |UT (xT , t)|2hA(xT , xP , t)h
∗
A(xT , x

′
P , t), (2.21)

14
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Conventional Image, Point Source Beacon Case
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Figure 2.8: (a) Conventional image point source case. (b) Conventional image
extended beacon case. [21]

where hNF (xP , xH) is the impulse response for the propagation from the lenslet array

to the sensor detector plane, xH is a coordinate in the Hartman detector plane and

h∗A(xT , x
′
P , t) is the impulse response of the atmosphere [21]. The integrals over xP

and x′P are propagations which move the field back from the lenslet array to the

detector plane and their product becomes the detector intensity. The integral over xT

would, under isoplanatic conditions, be a convolution which describes the propagation

of the field from the beacon to the aperture. However when considering an extended

beacon and possibly anisoplanatic conditions associated with it, the Hartmann sensor

has a significantly different result than for just a point source. This is illustrated in

Figure 2.8 with images from Ref. [21] where image (a) clearly has a different centroid

location from image (b).

2.3 Speckle Noise

2.3.1 Speckle Phenomena. When complicated objects are illuminated by

highly coherent light of the type produced by a laser, an important type of image

defect is seen. In particular, whenever the object is rough on the scale of an optical

wavelength, the image has a grainy appearance. The contrast in the image is very

pronounced, with large numbers of bright and dark spots. These spots apparently
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Figure 2.9: Typical Speckle Noise Pattern.

have relationship to the scattering properties of the surface of the scattering object.

This image defect is called speckle. The effect is not limited to reflections from

objects being also seen in images of transparent objects illuminated by coherent light

through a diffuser. A typical speckle pattern is shown in Figure 2.9. Detailed analysis

of speckle began in the 1960’s. However, studies had actually been carried out far

earlier (although not known as speckle at the time), by Verdet (1865) and Lord

Rayleigh (1880) in their work on Fraunhofer rings. Von Laue [14–16] derived many

of the basic speckle properties in the study of light scattered from a large number of

particles.

The vast majority of surfaces are extremely rough on the scale of an optical

wavelength [9] and under illumination by monochromatic light, the wave reflected

form such a surface consists of contributions from many scattering points with random

phases. The image formed at a given point in an observation plane consists of a

multitude of amplitude spread functions, each arising from a separate point on the

rough scattering surface as shown in Figure 2.10. As a result, the contributing spread

functions have widely varying phase and when added together, produce a highly

complex interference pattern.

The same arguments apply to transmission objects illuminated via a diffuser.

The diffuser causes the exiting wavefront to have a highly complex and corrugated
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Figure 2.10: Speckle formation in the image of a rough object. (redrawn from [9])

structure. In the image of this type of object, we can again see the large intensity

fluctuations caused by overlapping, dephased amplitude spread functions [9].

2.3.2 Speckle Intensity Statistics. Our knowledge of the exact wavelength-

scale, structure of the wavefront leaving the surface is often extremely limited, so it

is beneficial to think in terms of the statistical properties of speckle patterns. The

statistics are defined over an ensemble of objects, all with the same properties but

differing in the detail. If a detector is placed in the image plane at a precisely known

position, the measured intensity cannot be predicted exactly. We therefore attempt

to predict the intensity by using the statistical properties of the intensity over an

ensemble of rough surfaces. A most important statistical property of speckle is the

probability density function (PDF) of the observed intensity I at a point in the image.

Effectively we are asking, how likely is it that we will see a spot of given intensity at

that point? It is analogous to the well-known random walk [23, 24]. If the phases of

the individual scattered contributions are uniformly distributed over (−π, π), i.e. the

object is rough on the scale of a wavelength, then the field associated with any single

linear polarization component of the the image is a circular complex Gaussian random

17
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Ī = 5W/m2

P
I
(I

)

Figure 2.11: Negative Exponential distribution with mean Ī = 5.

variable (RV), and its intensity statistics have a negative exponential distribution,

PI(I) =











1
Ī
exp

(

−I
Ī

)

for I > 0,

0 elsewhere

where Ī is the mean intensity associated with that polarized component. Figure 2.11

shows an example of such a negative exponential distribution. If the scattered wave is

partially polarized, it can be shown that the density function for I is the difference of

two negative exponential functions [9]. The negative exponential distribution nature

of the speckle intensity implies the fluctuations around the mean are very pronounced.

If we define the contrast of a speckle pattern as the ratio of standard deviation to

mean, which for the polarized case, C = σI/Ī = 1. It is because of this very high

contrast that speckle is extremely disturbing to the human eye.

It is important to mention that the distribution of mean intensity Ī(x, y) in

the image of a coherently illuminated object is identical to the image intensity that

would be observed if the object were illuminated with spatially incoherent light of
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Figure 2.12: Typical Young’s Experimental Setup (redrawn from [9])

the same spectral power density [9]. Incoherent illumination may be regarded as a

rapid time sequence of spatially coherent wavefronts. Thus the time-integrated image

intensity observed from spatially incoherent illumination is identical to the ensemble

average intensity Ī(x, y) (assuming identical bandwidth). Therefore, methods used

for incoherent intensity distribution may also be used for predicting the mean speckle

intensity distribution with coherent illumination of a rough object.

When optically rough objects are illuminated by monochromatic light, the re-

flected wave cannot be treated as ergodic [9] as the time and ensemble averages are not

equal. This can be demonstrated by considering two different Young’s experiments of

the type shown in Figure 2.12.

First, let light reflected from a rough surface fall on a mask containing two pin-

holes. The fringe formed is observed on a distant screen. As the light is monochro-

matic, it is also spatially coherent [9] and the fringe has visibility ν given by

ν =
2
√
I1I2

I1 + I2
,

where I1 and I2 are the intensities of light falling on pinholes one and two, respec-

tively. Since the distribution does not change with time and the coherence of the

light has not been reduced by the amplitude and phase distribution imparted onto

the wave by a rough surface, the modulus of the complex coherence factor |µ12|, as

defined in Table 2.1, must be one (time averaged definition of coherence). In the

second example, objects with different surface profiles are successively placed in the

19



www.manaraa.com

Table 2.1: Names and definitions of Various measures of Coherence used in reference to Figure 2.12 (reproduced from [9])

Symbol Definition Name Temporal or Spatial Coherence

Γ11(τ) 〈u(P1, t = τu∗(P1, t)〉 [Note:Γ11(0) = I(P1)] Self coherence function Temporal

γ11(τ)
Γ11(τ)
Γ11(0)

Complex degree of (self) Coherence Temporal

Γ12(τ) 〈u(P1, t = τu∗(P2, t)〉 Mutual coherence function Spatial and temporal

γ12(τ)
Γ12(τ)

[Γ11(0)Γ22(0)]1/2 Complex degree of coherence Spatial and temporal

J12 〈u(P1, t = τu∗(P1, t)〉 = Γ12(0) Mutual intensity Spatial quasimonochromatic

µ12
J12

[J11J12]1/2 = γ12(0) Complex coherence factor Spatial quasimonochromatic
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illuminating beam, and all of the generated fringes are time integrated. Any one of

these component fringes has a visibility corresponding to |µ12| = 1, but the super-

position of the successive fringes does not because the phase from fringe to fringe is

not constant as each amounts to a new realization. Therefore the ensemble averaged

fringe produces a |µ12| that is not equal to 1.

The wave equation governing the propagation of light remains the same for

time- or ensemble-averaged properties of light. As such the laws governing the propa-

gation of coherence functions for time- and ensemble-averaged qualities are identical.

Therefore the mutual intensity, as defined in Table 2.1, of light reflected from a rough

surface and observed very close to that surface is the same as that observed from an

incoherent source. Over an ensemble of ideally rough surfaces there is little relation-

ship between the phases of scattered light from two closely spaced (< λ) elements on

the surface represented by a delta function mutual intensity,

J̄(ξ1, η1; ξ2, η2) = κĪ(ξ1, η1)δ(ξ1 − ξ2, η1 − η2),

where Ī is the ensemble average intensity distribution and κ is a constant. The mutual

intensity observed at a distance z from the source can be computed using the Van

Cittert-Zernike theorem and is given by

J̄(x1, y1; x2, y2) =
κe−jψ

(λ̄z)2

+∞
∫∫

−∞

Ī(ξ, η) exp

{

j
2π

λ̄z
[(∆xξ + ∆yη)]

}

dξdη,

where ψ = π
λ̄z

[(x2
2 + y2

2) − (x2
1 + y2

1)], (ξ, η) is a point in the source plane, (x, y) is

a point in the observation region, ∆x = x2 − x1, ∆y = y2 − y1 , λ̄ is the mean

wavelength of the source and Ī(ξ, η) is the ensemble averaged intensity distribution

across the scattering spot on the rough surface. Given the geometry as in Figure 2.10,
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the mutual intensity in the image is given by

J̄(u1, v1; u2, v2) =
κ

(λ̄z2)2
exp

{

−j π

λ̄z2

[

(u2
2 + v2

2) − (u2
1 + v2

1)
]

}

×
+∞
∫∫

−∞

|P (x, y)|2 exp

{

j
2π

λ̄z2
(∆ux+ ∆vy)

}

dxdy,

where P is the complex pupil function of the lens, κ is a constant and ∆u = u2 −
u1,∆v = v2 − v1.

2.3.3 Speckle Photon Count Statistics. While intensity distribution statistics

are both helpful and valuable aids in describing speckle, photon count statistics are at

the heart of detection and motion estimation for speckle images. We consider a single-

mode laser whose light falls on a detector and we wish to determine the distribution of

the number of events in any τ -second interval. Assuming constant incident intensity,

the integrated intensity on a pixel with area A is given by

W = I0Aτ,

with probability density of the form

PW (W ) = δ(W − I0Aτ).

Substituting into Mandel’s formula [18], in which the unconditional probability of

observing K photo events can be expressed as

P (K) =

∫ ∞

0

P (K|W ) pW (W ) dW

=

∫ ∞

0

(αW )K

K!
exp−αW pW (W ) dW,

(2.22)

where α is a proportionality constant equal to the ratio of quantum efficiency to

energy η/hv̄ and pW (W ) is the probability density function of the integrated intensity.
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Performing the integration yields

PK(K) =
(αI0Aτ)

K

K!
e−αI0Aτ . (2.23)

Since the mean number of photon events K = αI0Aτ , we can rewrite Eq. (2.23) as

PK(K) =
(K)K

K!
e−K .

From this, the mean in terms of the variance is σ2
K = K. With care, this ideal model

can be closely approximated in practice. There are two cases of photon count statistics

for polarized thermal radiation:

1. Counting time shorter than coherence time, and

2. Counting for arbitrary time.

we begin with the first case, it gives a good approximation for the tracking scenario.

Since the counting time is extremely short, the incident intensity can be assumed to

be constant over the entire counting interval. Therefore, the integrated intensity is

equal to the product of the intensity, the counting time, and the detector area:

W = I(t)Aτ.

The value of the intensity within that interval is random and obeys negative expo-

nential statistics as discussed in Section 2.3.2. It follows that the same should be true

of the integrated intensity, such that

PW (W ) =
1

W
exp

(−W
W

)

,W ≧ 0.

We can now find the photon count statistics by substituting into Mandel’s equation

and integrating to give

P (K) =
1

1 + αW

(

αW

1 + αW

)K

.
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Substituting in K = αW gives

P (K) =
1

1 +K

(

K

1 +K

)K

. (2.24)

The distribution represented by Eq. (2.24) is the Bose-Einstein distribution which has

variance equal to σ2
K = K+(K)2. Note that the first term, K, represents the Poisson

nature of the integration of light and matter and the second, (K)2, represents the

fluctuations of integrated intensity which are significant if K ≫ 1. If we examine the

signal-to-noise ratio given by

S

N
=

√

K

1 +K
,

it can be seen that the S/N approaches 1 as K → ∞. This indicates that the count

variation, just as with the intensity variation, is substantial. Probability masses

associated with Poisson and Bose-Einstein distributions are shown in Figures 2.13

and 2.14, respectively. Comparison of these two figures shows that when the mean

number of counts is greater than 1, the spread of the Bose-Einstein distribution is

greater than that of a Poisson distribution and consequently fluctuations in photon

count for Bose-Einstein is greater than for Poisson. Additionally, when the number

of counts K is ≪ 1, the differences between the two distributions is small, and it can

be shown [9] that only one and zero events have significant probability so that the

two distributions become asymptotically the same.

Alternatively, since this research is giving consideration to shot noise as well as

speckle noise, the negative binomial distribution case shown by Goodman in Ref. [9]

is also examined. This case includes the effects of both the random arrival nature of

photons and the negative exponential distribution of speckle noise. The difference in

this case is that the counting interval τ , previously assumed to be much shorter than

the coherence time of the incident light, is now an arbitrary interval which maybe

longer than the coherence time. Assuming that the wave incident on the sensor has

a coherence area that is much larger than the area of the sensor, the approximate
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Figure 2.13: Poisson distribution with mean K = 5
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Figure 2.14: Bose-Einstein distribution with mean K = 5
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solution for the probability density PW (W ) is a gamma probability density [9], given

by

PW (W ) =











(

M
W

)M WM−1 exp(−MW
W

)
Γ(M)

for W ≥ 0,

0 elsewhere

where M is the number of degrees of freedom of the intensity included in the mea-

surement interval (see Ref. [9] for more detail). Knowing the approximate form of the

probability density function of the integrated intensity, the probability density func-

tion of the number of photo counts in the arbitrary time interval can be calculated.

Again using Mandel’s formula and integrating gives

P (K) =
Γ(K + M)

Γ(K + 1)Γ(M)

[

1 +
M
K

]−K [

1 +
K

M

]−M

, (2.25)

where K = αW . This is known as the negative binomial distribution and is a good

approximation [9] to the photo count distribution considered in this research.

2.4 Tilt Estimation

Wave fronts, also called phase fronts can be described as a line along which all

points have the same phase, i.e. a surface of constant optical path length (OPL). It

would be fantastic if we could directly measure this wavefront, however, at the visible

and infrared frequencies concerned, the phase of the light does not interact with the

medium through which it travels in a manner which we can observe. Just as our eyes

respond to changes in intensity, most detectors also respond to the intensity of the

incident light. We need a way of using this fact to derive the phase of the wavefront

from the observed change in intensity. There are many types of aberrations resulting

from changes imposed on the wavefront. We are only concerned here with tilt and

the measurement of it for tracking purposes. Tilt can be described as the deviation

of the incident wavefront from a reference.

Figure 2.15 shows how a beam with a tilted wavefront, passing through an

aperture follows a set geometry. If the beam is focussed to a spot, and the beam
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Figure 2.15: Wavefront Tilt Geometry - redrawn from [26]

has no tilt, then the spot would be focused on the optical axis. If the beam has

tilt then the spot is focussed off axis. The spot position is shifted off axis by a

distance proportional to the tilt angle. In actual fact, it is the weighted centroid of

the focussed spot that is shifted. If a detector which responds to the position of the

focussed spot is placed in the focal plane we have a way of measuring the tilt. Tilt

sensors measure the OPL difference either directly in the form of an interferogram or

indirectly through the differential wavefront as a function of pupil coordinates. Tilt

sensors convert angular wavefront errors into intensity variations that can be sensed

by a photodetector and converted to a wavefront tilt measurement by other means.

The traditional tilt estimation and motion tracking problem is well-understood and

adequately addressed when the object of interest is a point source or a source whose

dimensions and distance from the observing aperture allow it to be safely treated

as a point source. However, when the dimensions of the object of interest preclude

it from being safely modeled as point source, as in many real-world scenarios, the

problem is not so well-addressed. The uncooperative or extended source presents

many challenges to the motion tracking and tilt estimation problem. The traditional

centroiding method employed in most Shack-Hartmann type sensors relies on points

of high contrast within the image to act as beacons in estimating the wavefront
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tilt. When considering extended beacons or scenes which are large compared to the

aperture diameter, there are often few, if any, high contrast points and the centroid

algorithm often performs poorly. Additionally the centroid algorithm is sensitive

to noise such as that due to the random arrival of photons to the sensor, shot noise.

Cross correlation algorithms offer improved noise rejection properties as well as better

performance over scenes where there are few prominent high contrast points, such as

that found with some extended sources. They do have one serious drawback in that

the computational burden due to the two dimensional cross correlations carried out

is often heavy and renders the method slow and intensive.

The projection algorithm as derived in Ref. [5] utilizes two separate sensor arrays

to sense the tilt in each of two dimensions. Optical tilt over the incoming wavefront

is fed to each of the two sensors via a beam splitting mechanism and produces a shift

in spot position on the array. The projection based algorithm relies on the data read

out from the sensors in vector form and uses the cross-correlation technique to derive

tilt in each dimension. This vector readout method is not new and has been used

before by MIT Lincoln Labs in their SWAT system [1]. It does depart, however, in

the method used to estimate optical tilt, the cross correlation of the vector read out.

2.5 Description of Algorithms

2.5.1 Centroid algorithm. The centroid algorithm used in this report is

the traditional algorithm whereby the center of mass is calculated by dividing the

sum across both x and y dimensions of the pixel values, weighted according to their

displacement from the center, by the unweighted sum across both dimensions. The

calculation is similar for both the x and y dimensions. The equation for the x dimen-

sion is

Cx =

∑

x

∑

y xi(x, y)
∑

x

∑

y i(x, y)
(2.26)
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where x is the position in the detector array from the origin and i(x, y) is the signal

at detector coordinates(x, y). As used in simulation described in Sect. 3.2, this tilt is

in units of detector pixels. To enable comparison with other algorithms we convert it

into rad/meter in the following manner.

If we take the PSF for no tilt to be

Psf(n) =

∣

∣

∣

∣

∣

N
∑

k=1

A(k)e
−j2πnk

N

∣

∣

∣

∣

∣

2

(2.27)

where A is the amplitude of the kth pixel in the array, N is the dimension of the array

in pixels and n is the pixel index, then the PSF for the motion of one pixel is

Psf(n) =

∣

∣

∣

∣

∣

N
∑

k=1

A(k)e
−j2π(n−1)k

N

∣

∣

∣

∣

∣

2

(2.28)

which can be separated in the exponential to give the slope of the tilt change to

be 2π/N rad/aperture pixel. This is easily adapted to give the conversion from

detector pixels to rad/m as 2πP/(ND) rad/m/detector pixel of motion, where D is

the aperture diameter in meters and P is in aperture pixels.

The centroid algorithm is the optimal tilt estimator for Gaussian focal spots

with Poisson noise [6]. However as can be seen from Eq. (2.26), the outlying pixels

are weighted more than the ones closest to the center. The dimmest pixels are often

found furthest from the center, which means that the least important and noisiest

pixels are given a higher weighting in this algorithm which contributes to its lower

performance in noisy extended scenes.

2.5.2 Projection algorithm. The key advantage to using the projection-

based cross-correlation algorithm is that the two-dimensional image is reduced to a

one-dimensional image, which preserves the tilt information present in one dimension

of the original image. So that tilt information in both dimensions can be measured,

two sensors are required. The operation of both is identical, and for the purposes of
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Figure 2.16: Projection transformation employed on a sensor

this report, only analysis for one sensor is shown. Referring to Figure 2.16, assuming

a W×W lenslet array forming images onto a Z×Z-pixel sensor array and considering

just one image formed on the sensor, the data are read off in vector form such that each

projection drk(s) is the summation of the image across the columns of the sub-array

being considered as

drk(s) =

Z/W
∑

r=1

Dk(r, s) (2.29)

where (r, s) are sensor array coordinates, Dk(r, s) is image associated with the kth

observation, and Z and W are as previously defined.

In Ref. [6] it is shown that the maximum-likelihood (ML) estimator is a good

slope estimator for wavefronts in the presence of noise. This combined with the

benefits of using cross-correlation make it beneficial to use a Bayesian estimator for

the tilt parameter. Here the estimator is derived by forming the likelihood function for

the tilt conditional on the data and then maximizing it with respect to the tilt [27].

The likelihood function can be cast as the conditional a posteriori density or the

conditional probability of the tilt parameter, given the measured projection and the

tilt parameter from the previous image frame. It is assumed that an estimate of the

true projection is known and is deterministic, and the associated tilt parameter β in
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this case for vertical shift is random. The estimate is given by

ir(s)wr(s) =

Z/W
∑

r=1

i(r, s)w(r, s) (2.30)

where i(r, s) is a reference frame, which may be the first frame captured, and wr(s),

w(r, s) are window functions of value 1 in the area of interest and zero otherwise.

In order to capture the discrete and non-negative nature of the photon counting

process, a Poisson model is used for the measured projection drk(s) corresponding to

the kth frame captured. The model having a point-wise mean of ir(s− βk)w
r(s) for a

given shift in the vertical of βk. As previously stated, the likelihood function requires

knowledge of the distribution of the tilt parameter from frame to frame. This can be

illustrated using Bayes’ rule, in that

fβk|d
r
k,βk−1

(b|d, b′) =
fdr

k|βk
(d|b)fβk|βk−1

(b|b′)
fdr

k
(d)

, (2.31)

where fβk|d
r
k,βk−1

(b|d, b′) is the probability of the tilt for frame k conditioned on the

measured projection drk and the tilt from the previous frame βk−1 , fβk|βk−1
(b|b′) is the

probability of the random tilt being equal to βk = b, conditioned on the tilt parameter

of the previous frame being βk−1 = b′ , fdr
k|βk

(d|b) is the probability that the projection

vector random process is equal to a specific realization of that process conditioned on

βk = b and fdr
k
(d) is the unconditional probability that the projection vector random

process is equal to a specific realization.

To estimate the tilt parameter, Eq. (2.31) is maximized with respect to its

logarithm L(b) giving the maximum likelihood function

L(b) = ln[fdr
k |βk

(d, b)] + ln[fβk|βk−1
(b|b′)] − ln[fdr

k
(d)], (2.32)
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which can be expressed as a function of terms that only depends on the shift b, by

dropping the third term which is independent of b to give

L(b) = ln[fdr
k|βk

(d, b)] + ln[fβk|βk−1
(b|b′)]. (2.33)

In order to maximize this expression in terms of the tilt parameter b, we must have

some knowledge of the probability of the current tilt parameter conditioned on the

tilt from the previous frame. If this knowledge is available it should be used, however

in many cases it is not and it is common practice [6] to choose a uniform density

which does not vary with b and the second term of Eq. (2.33) may be dropped. In

this research a uniform window centered on the previous tilt estimate is used.

The projection vector drk represents an ensemble of independent Poisson random

variables associated with individual pixel measurements. Given the initial assumption

of statistical independence between measurements, the pdf of a collection of samples

of drk given βk = b can be expressed as a product of the marginal densities over all

pixels in drk, such that

fdr
k|βk

(d, b) = P(drk = d|βk = b) =

Z/W
∏

s=1

wr(s)ir(s− b)d(s)e−i
r(s−b)wr(s)

d(s)!
, (2.34)

giving the log-likelihood function to be

L(b) =

Z/W
∑

s=1

d(s) ln[wr(s)ir(s− b)] − wr(s)ir(s− b) (2.35)

In this research the widowing function wr(s) is chosen to be smaller than the

size of the projection vector by a number of pixels equal to 2bmax, where bmax is the

expected maximum absolute value of the tilt parameter. Then, because the window
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function is defined as

wr(s) =



























0 for 1 ≤ s ≤ bmax,

0 for Z/W − bmax ≤ s ≤ Z/W,

1 elsewhere,

the natural logarithm is equal to negative infinity for values of s which make the

window function equal to 0. To avoid this, the limits of integration are chosen to

include only those points where the window function is non-zero, making the log-

likelihood function

L(b) =

Z/W−bmax
∑

s=bmax

d(s) ln[ir(s− b)] − ir(s− b). (2.36)

Equation (2.36) can be maximized with respect to tilt parameter b using an

iterative approach to computing the value of the function locally around the current

estimate for b and updating the estimate in the direction of increasing L in steps of

∆b. The value of ∆b becomes the resolution of the tilt estimation algorithm in units

of array pixels. A linear interpolator is chosen to produce sub-pixel resolution for tilt

estimates. The linear interpolator has the form

ir(s− b) = [(1 − bf )i
r(s− bi) + (bf )i

r(s− (bi − 1))], (2.37)

where bi and bf are the integer and fractional parts of b respectively.

In general, the wavefront sensing and tilt estimation problem has been addressed

well in the case of point sources and to some extent extended beacons [20, 21]. The

projection-based cross correlation algorithm has been suggested as being effective in

viewing stellar and laser beacons but little has been done to evaluate its performance

in the specific case of speckle noise. Research has been done on the effects of speckle

on various aspects of motion estimation and imaging Ref. [2,7, 25, 28]. This research
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aims to examine that particular case where the projection algorithm is applied to the

speckle noise case.
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III. Simulation Structure and Models

This chapter conveys the approach and methodology used to address the research

goals. First, the simulation structure is presented and discussed. Then, each

conceptual model used in the simulation is explained. Lastly, the metrics developed

to enable meaningful conclusions to be drawn from the results are presented and

discussed.

3.1 Simulation Structure

This section describes how the simulation is built and provides a visual repre-

sentation of the physical simulation structure to assist the reader in conceptualizing

the simulation goals. The simulation goals are to compare and contrast the perfor-

mance of projection-based cross-correlation and traditional centroiding tilt estimation

algorithms in the presence of speckle noise. Figures 3.1 and 3.2 show the conceptual

structure of the simulation for each of the centroiding and projection-based cases.

Simply, the simulation involves a source propagated to an optical element which fo-

cusses the light onto a wavefront sensor. In both cases, the source is situated on the

optical axis, a distance Z away from the focussing element, a thin lens. It is assumed

that Z ≫ 2D2/λ where D is the diameter of the pupil in meters and λ is the wave-

length of light in question. This geometry was chosen to simplify the propagation

problem to one of simply performing a Fourier transform to propagate the source to

the lens. It was not a primary goal of this research to compare the results with and

without turbulence. However, real-world scenarios would always have some degree of

atmospheric turbulence present, and for this reason it is given consideration here. The

turbulence in this simulation is applied at the lens surface. The turbulence applied

is assumed to simulate path turbulence between the source and the lens. For simu-

lation purposes the wavefront sensor is located at the focal plane of the lens. Again,

this allowed a Fourier transform to be used to propagate from the lens to the sensor.

In the case of the projection-based algorithm shown in Figure 3.2, a beam-splitter

is situated between the lens and each wavefront sensor. The reasoning for splitting
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Figure 3.1: Conceptual Diagram of Simulation for the Centroiding case

Table 3.1: Simulation Parameter Space
Parameter Symbol Units Value

Propagation grid N pixels 128
Aperture Dimension P pixels 64
Aperture Diameter D m 0.07

Fried Seeing Parameter r0 m 0.07
Intensity DOF M unitless 1

Window function w pixels 24

the beam into separate X and Y plane components is described in Section 2.5.2. In

this simulation only one sensor is simulated as the performance of each is identical.

Table 3.1 lists the parameters used throughout the simulation.

3.1.1 Simulation Description. This section describes the process of the

simulation. Both the projection-based and centroiding algorithms are simulated in

each of the following four scenarios:

1. Extended source without turbulence,

2. Speckle source without turbulence,
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Figure 3.2: Conceptual Diagram of Simulation for the Projection-based case.

3. Extended source with turbulence, and

4. Speckle source with turbulence.

The analysis computes the rms tilt error for mean light levels of 100 to 1000 photons

received, in steps of 100 photons. At each light level, 1000 realizations of the propa-

gation are used to compute the rms tilt error. As the tilt variance can be very large,

the rms error is computed to better model the tilt measured by the sensor due to

pixel integration time. A separate phase screen, simulating atmospheric turbulence,

is used for each realization. This increases the randomness of the simulation. Poisson-

distributed random noise is added to each realization to simulate the random arrival

nature of the photons, known as shot noise. A non-noisy image frame is used as a

reference at each light level. For the projection-based model, the reference frame is

computed from the average of 1000 realizations of the source to image plane. This

corresponds the the idea that the sensor may be staring at the target for a period of

time before tracking commences. The original source image is used for the centroid-

ing algorithm, since the source is on the optical axis. Then the tilt measured by the
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centroid on the source image is the zero tilt reference for the centroiding algorithm.

Listing III.1 shows the Matlabr code used to compute the reference image.

Listing III.1: Reference Image Code Section. (chapter3/ReferenceImageCode.m)

1 otf1 = otf_array(:,:,iloop1); % choose otf from tilt removed phase...

screen

if iloop1 == 1

for iloop3 = 1:images

psf1 = (abs(ifft2((fft2( extended_source)).* ...

otf1)));

psf1_correct_kbar = psf1 * Kbar(iloop2); % set...

average rxd photon count Kbar

6 temp=ones(128 ,128)./(ones (128 ,128)+...

psf1_correct_kbar/2);

speck_image_correct_Kbar = icdf(’nbin’,rand...

(128 ,128) ,1,temp); % set average rxd photon...

count Kbar

speckle_ref_image = speckle_ref_image + (...

speck_image_correct_Kbar)/images;

proj_ref_image = proj_ref_image + (...

psf1_correct_kbar)/images;

11 end % for iloop3

end % if iloop1

In order to propagate the source through the system, firstly, the Matlabr

function Make otf.m, described in Section 3.2.1 is used to compute the Optical Trans-

fer Function (OTF) of the propagation. Then the inverse Fourier transform of the

product of the source and the OTF is computed to give the PSF which is normalized

for one photon. At this point the PSF is corrected for the desired mean light level

(100 to 1000 photons). The speckle image is now created as described in Section 3.2.3.

Shot noise is then applied using the Matlabr function poissrnd. The wavefront tilt

estimates using both centroid and projection-based methods are then calculated using

the functions centroid.m and projection methodX.m, which are described in Sections

3.2.5 and 3.2.6, respectively. The tilt error, defined here as the difference between the

known or reference tilt and the computed tilt of the new image, is then computed for

each scenario. The projection-based algorithm internally computes the tilt in rad/m.

However, the centroiding algorithm does not. Therefore, the measured tilt in the

centroiding case must be converted into units of rad/m before the error from both
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methods is stored and used to compute the rms tilt error as described in Section 3.3.

The rms tilt error for each light level is then stored for display in plot form.

3.2 Simulation Models

3.2.1 Optical Transfer Function Model. The system OTF is computed by

the function Make otf2.m which is shown in Listing A.2. Make otf2.m works by

creating an aperture function and filling it with the phase at the aperture (provided

by the user). In this simulation, the phase is the turbulence-induced wavefront error

produced by the phase screen generation code as described in Section 3.2.4 or in

the case where turbulence is not considered, a zero phase screen. The function then

performs an autocorrelation of the pupil using the fft2 function and then normalizes

the result to yield the OTF.

3.2.2 Extended Source Model. An often-used definition of an extended

source is one where the source is considered extended when it can be resolved in the

image plane. A considerably more in-depth description is provided in Roggemann and

Welsh [21], and further references to extended sources are made in Refs. [12, 17, 19,

20,22]. Although, none of those cited works gives clear guidance on when a source is

extended and when it is not. For the purposes of this research, all that is required is

for the source to be sufficiently large to adequately display the effects of speckle noise

and to be resolved in the image. For this reason, the extended source was chose to be

a 4× 4 pixel source in a 128× 128 propagation grid which, when imaged through the

system, was resolved and provided an acceptable level of speckle distortion. Figures

3.3 and 3.4 show the extended source model and the image produced by the simulation.

It clearly meets the objective of being resolved.

3.2.3 Speckle Noise Model. Various statistical models for use in simulating

speckle noise are described in Section 2.3.3. The negative binomial model was chosen

for this simulation because of its relative ease of implementation in Matlab
r . No

direct function exists for generating negative binomial distributed random variables in
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Figure 3.3: Extended source Model
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Figure 3.4: Image of extended source
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Matlabr . However, there is an Inverse Cumulative Distribution Function (ICDF ),

which, when given an appropriate probability distribution and other parameters, gen-

erates a random variable of the desired distribution and mean. The ICDF returns an

array of values of the inverse cumulative distribution for a specified probability distri-

bution, given an input data set and mean. In this simulation, the desired distribution

is Negative Binomial, the data set is a random realization of 128 × 128 pixel image

with pixel intensity from 0 to 1 and the mean is a 128×128 array in which each value

is set according to

B =
M

M +K
, (3.1)

where B is the mean and M and K are as previously defined.

This method of generating random variables has been validated through numer-

ical analysis [13]. A 128× 128 pixel image (later windowed to 24× 24 as described in

3.2.6) was computed by propagating the source using a series of Fourier transforms

and applying an OTF generated from the OTF model from Section 3.2.1 to compute

the PSF. The PSF is then corrected for the desired mean light level. A temporary

array is created with the correct mean photon count and supplied to the icdf func-

tion to produce the speckle image with correct statistical distribution and mean light

level. Listing III.2, taken from the parent file Thesis simulation code V 11, is used to

implement this model. Figure 3.5 shows an example of the image of a speckle source

created with the previously discussed method.

Listing III.2: Speckle Model Code section. (chapter3/Specklemodel.m)
psf1 = (abs(ifft2 ((fft2( extended_source)).* otf1)));

3 psf1_correct_kbar = psf1 * Kbar(iloop2); % set average rxd...

photon count Kbar

temp=ones(128 ,128)./(ones(128 ,128)+psf1_correct_kbar/2);

speck_image_correct_Kbar = icdf(’nbin’,rand(128 ,128) ,1,...

temp); % set average rxd photon count Kbar

3.2.4 Atmospheric Turbulence Model. Atmospheric turbulence results in

variations in the refractive index along optical path. This variation is a random

process, and so a model of this turbulence should be a statistical average of this
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Figure 3.5: Image of speckle source

random variation. Phase screen creation involves generating single realizations of this

random process. This can be achieved by transforming computer-generated random

numbers into two dimensional arrays of phase values that have the same statistical

distribution as the random turbulence-induced phase variations. In most cases the

phase is written as a sum of basis functions. Two commonly used basis sets are

Zernike polynomials and Fourier series. The Fourier series is the basis set used in this

simulation. A detailed description of this method is found in Ref. [11]. Briefly, this

method involves writing the optical phase φ(x, y) as a Fourier series:

φ(x, y) =

∞
∑

n=−∞

∞
∑

m=−∞

cn,m exp[i2π(fxnx+ fymy)], (3.2)

where fxn and fym are the x and y spatial frequencies and cn,m are the Fourier coeffi-

cients. Treating the phase as a two dimensional signal and making use of Parseval’s

theorem the Fourier series coefficients become

〈|cn,m|2〉 = Φ(fxn , fym)∆fxn∆fym , (3.3)

where Φ(fxn, fym) is the power spectral density of the turbulence-induced phase delay

and ∆fxn and ∆fym are the corresponding sample spacings of the spatial frequen-

cies. The expectation has been taken because the phase is a random process. Given
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the phase variations are independent from one another in a statistical sense, the

central-limit theorem can be used to determine that the coefficients are Gaussian in

distribution, which obey circular Gaussian statistics of zero mean and variance given

in Eq. (3.3). Knowing this, random Gaussian numbers generated via Matlabr can

be multiplied by the square root of the variance in Eq. (3.3). In this simulation the

Fourier-series coefficients are generated on a uniformly sampled grid and the FFT

method is used to synthesize phase screens with a good degree of computational ef-

ficiency. Listing A.7 gives the Matlabr code used to implement this method and

generate the phase screens. However as noted in Ref. [11] this method can result

in poor simulation of low-order modes such as tilt. In this research it is desired to

only examine the tilt induced by speckle noise, and not introduce anymore tilt than

that of the speckle. Therefore this is not an issue. Furthermore, any residual tilt is

removed from the phase screen by generating an array with the projected tilt across

it and subtracting this from the generated phase screen. Listing III.3 from Listing

A.2 shows Matlabr code used to implement the tilt removal.

Listing III.3: Tilt Removal Code section. (chapter3/TiltRemovalCode.m)
%% tilt removal section

tx = 2*pi*( -64:63)/128;

tx_matrix = ones(128 ,1)*tx;

wvs_x = sum(sum(tx_matrix.*phase .*aperture));

5 wvs_x = wvs_x/sum(sum(aperture.* tx_matrix.^2));

new_screen = phase - wvs_x*tx_matrix;

Figure 3.6 shows an example phase screen generated by this model.

3.2.5 Centroid Method. The centroiding algorithm described in Section

2.5.1 is implemented in Matlabr code. The centroiding equation, Eq. (2.26) is

almost coded line for line in Matlabr . The supplied image is windowed in the

same dimensions as the projection-based method uses to enable valid comparison of

results. Listing A.3 shows the Matlabr code used. The code outputs the tilt in

units of pixels so this must be converted to rad/m, as described in Section 3.3, for

comparison with the projection result. As in the projection-based method, only one

dimension is simulated here.
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Figure 3.6: Sample phase screen created by the FFT method in this simulation.

3.2.6 Projection-based Method. There are two functions in this simulation

that implement the projection algorithm as described in Section 2.5.2. They are

functionally identical, differing only in the manner in which the linear interpolation

step is implemented, the reasons for this are explained later in this section. The

algorithm is implemented in two steps. Step one is the formation of the vector drk(s)

as in Eq. (2.29), by summing across the sensor in the dimension desired, x or y,

which would correspond to the sensor being read out in vector mode. Lines 9 to

11 of Listings A.4 and A.5 show how this is implemented. This process is carried

out on both the image frame of interest and the reference image frame. Step two is

the vector cross-correlation, which involves the formation of the likelihood function

and the linear interpolation as described in Section 2.5.2 and Eq. (2.33), (2.34) and

(2.35). The windowing of the log-likelihood function as described in Section 2.5.2 and

shown in Eq. (2.36) is implemented by line 8 and the loop beginning at line 14 of

listings A.4 and A.5. Note the end points and step size of the loop are identical to

those of the vector initialized in line 8. These lines of code set the window size to

±5 pixels from image center, which corresponds to the optical axis. The window size

is modeled on that chosen in the proposed implementation of this algorithm in the

Dunn Solar Telescope in Ref. [5]. In that case, an E2V CCD60 array with pixels of

24µm pitch, and a sub array size of 24 × 24 pixels was used, yielding a field of view
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of 1/3 of an arc second. The difference in the two functions came from experience

gained during the simulation evaluation. The difference lies in the method used to

derive sub-pixel accuracy in the linear interpolation. Both methods achieve the same

accuracy using different approaches. ProjectionMethod2 separates the interpolation

into an integer and fractional component and interpolates from there. This achieved

good results with the speckle case, and poorer results with the non-speckle case.

Through research it was found that inherent sub-pixel accuracy of the makeshift vec

function achieved better results with the non-speckle case and thus two versions are

used.

3.3 Simulation Metrics

In order to make proper comparison of results obtained, the rms tilt error due

to noise in units of radians per meter was calculated for all simulations. As previously

mentioned the projection-based method inherently computes the tilt error in units of

rad/m. By examining the centroiding equation, Eq. (2.26), it can be seen that the

tilt computed by the centroiding method is in units of detector pixels. To enable

comparison with other algorithms we convert it into rad/m in the following manner.

If we take the point spread function (PSF) for no tilt to be as shown in (2.27) then

the PSF for motion of one pixel is

PSF (n− 1) =

∣

∣

∣

∣

∣

N
∑

k=1

A(k)e
−j2π(n−1)k

N

∣

∣

∣

∣

∣

2

, (3.4)

which can be separated in the exponential to give the slope of the tilt change to

be 2π/N rad/aperture pixel. This is easily adapted to give the conversion from

detector pixels to rad/m as 2πP/(ND) rad/m/Detector pixel of motion, where D is

the aperture diameter in meters and P is in aperture pixels.
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The rms tilt error σn is computed by

σn =

√

∑Ni

n=1 ∆2
n

Ni
, (3.5)

where Ni is the number of realizations made at each mean light level and ∆ is the

computed tilt error for a given realization.
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IV. Simulation Results

This chapter presents the results of the simulation described in Chapter III and

presents some discussion in the context of the original research goals.

4.1 Simulation using Extended Source No Speckle

The research done by Cain in Ref. [5] and Cain, Hyatt, and Armstrong in

Ref. [4] established a baseline premise for the results of this research, in that the

projection-based cross-correlation algorithm exhibited improved performance when

viewing stellar beacons as well as extended objects and scenes. The first goal of this

research was to establish the performance of the projection-based algorithm when

considering extended objects. Figure 4.3 shows the computed tilt error for both

the projection-based and traditional centroiding algorithms in plot (a) the case with

no turbulence considered and plot (b) with turbulence considered. In Figure 4.3(a)

it can be seen that, as expected, the projection algorithm performs better than the

centroiding algorithm at all mean light levels simulated. Although the difference is not

significant, it is measurable. In Figure 4.3(b) it can be seen that, again the projection

method exhibits better performance, in this case by an increased margin. Whilst the

computed error has increased for both methods, the increase in error produced by the

centroid method was much larger and tends to stabilize as the light level increases

while the project method continues to improve.

4.2 Simulation using Extended Source with Speckle

Figure 4.2 shows the computed tilt error for both the projection-based and

traditional centroiding algorithms in the presence of speckle noise for plot (a) the

case with no turbulence considered and plot (b) turbulence considered. Again, the

projection method performs better than the centroid, although with a much less

observable difference. This indicates that the speckle noise is the dominant effect,

and that the turbulence may even exacerbate the effect of speckle.
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Figure 4.1: (a) Tilt error for extended source with no turbulence.
(b) Tilt error for extended source with turbulence.
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Figure 4.2: (a) Tilt error for speckle with no turbulence.
(b) Tilt error for speckle with turbulence.
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Figure 4.3: (a) No turbulence considered tilt error.
(b) Turbulence considered tilt error.

4.3 Effect of Atmospheric Turbulence and Speckle

When considering all results, it can be seen that once speckle is introduced the

turbulence effect is minimal by comparison. The projection-based algorithm consis-

tently performs better than the traditional centroiding algorithm in all cases. It is

interesting to note however, that the increasing light levels did not appear to favor

either method when speckle was considered.
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V. Conclusions and Further Work

This chapter presents a summary of the research and key results from Chapter IV.

Further, it addresses the main challenges faced during this research and how

well the initial goals were satisfied. Recommendations of further work that could

begin with and extend on these results is also discussed.

5.1 Summary

The objective of this research was to examine the performance of a projection-

based cross correlation algorithm as developed by Cain in Ref. [5] in the presence of

speckle noise via simulation. Three areas of research made up the bulk of this work.

They were:

1. Extended Beacon modeling,

2. Speckle noise modeling, and

3. Implementation of MLE and the projection-based algorithm.

It was necessary to have all three areas functioning correctly to produce results

from which valid conclusions could be drawn. As discussed in Chapter III, consid-

eration was also given to effect of atmospheric turbulence on the performance of the

algorithm.

The research began with an examination of the performance of the projection

algorithm with extended beacons. This required the development of a suitable model

for use in simulation. Much work [22,28,29], has been done on the theory of extended

versus point sources, but little has been done on mathematically modeling them. This

presented a challenge in this research. It was eventually decided that any source that

could be resolved in the final image would be sufficient to model an extended source

for the purposes of this research. The performance of the projection algorithm was

examined in simulation against the performance of the traditional centroiding algo-

rithm and was shown to offer measurable improved performance over the centroiding
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method in both the case where turbulence is not considered and when it was con-

sidered. In particular the performance improvement margin was significant in the

case where turbulence was considered. This could be attributed to the ability of the

projection based algorithm to reject the low spatial frequency changes in the image

introduced by turbulence. Also noteworthy in the case where turbulence is consid-

ered, is the reducing error trend as the mean light level increases for the projection

method. This contrasts with result for the centroiding method, which is trending to

level out.

Considerable work had been done previously on both characterizing the statis-

tical nature of the speckle phenomena [2, 8–10], and on the use of MLE for motion

estimation [3, 7, 25]. Little work had been done on combining these experimentally

in simulation and examining the results. Several statistical models for speckle phe-

nomena have been put forward and in some cases [9, 10] validated by mathematical

evaluation. These models all had limiting cases and applications and remained unclear

as to whether there was an overall model that, while not characterizing all aspects

of speckle noise completely, would be acceptable for widespread use. Two models

in particular were evaluated for their ability to model speckle in the context of this

research, that is, the case of tracking. The negative exponential distribution for pho-

ton count, as discussed in Section 2.3 with later addition of Poisson distributed shot

noise, was initially explored. However this method produced images, Figure 5.1, after

propagation that were no longer acceptable as speckle images because they did not

display the known properties of speckle noise. The negative binomial distribution

as detailed in Section 2.3 and Ref. [9], which includes both speckle effect and shot

noise was found to generate images with the correct speckle features as shown in

Figure 3.5. Using this negative binomial distribution reduced the computational load

in computing the final image to present to the projection algorithm. It was shown

that the projection algorithm again consistently performed better than the traditional

centroiding algorithm in both the case of with turbulence and without turbulence. It

is noteworthy again that the addition of turbulence had little effect on the overall
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Figure 5.1: Initial Speckle Model Image

performance of either algorithm when speckle was present. Turbulence did not seem

to affect the average performance of either algorithm measurably, however it did pro-

duce a pronounced increase in the variation in computed error. Figure 5.2 shows the

results obtained with the overall mean error for each case. This would indicate that

speckle is the dominant effect, which is not surprising as the statistical pdf used for

the MLE was Poisson and does not account for the Bose-Einstein nature of speckle

noise. The reason for the increase in error at a mean light level of > 800 photons is

unclear and may in fact be a statistical anomaly which would be resolved by more

realizations at each light level with the added burden of increase computation time

or may be averaged out with an increase in the maximum mean light level simulated

to greater than 1000 photons. Additional research may be carried out to determine

if there are limits (high or low mean photon counts), outside of which the existing

algorithm no longer provides a good approximation. Overall the projection-based

cross-correlation algorithm has been shown to have increased performance over the

traditional centroiding algorithm in the presence of speckle noise.

5.2 Key Results

This section summarizes the key conclusions from the simulation results in

Chapter IV.
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Figure 5.2: (a) Computed mean tilt error no turbulence.
(b) Computed mean tilt error with turbulence.

• The projection-based cross-correlation algorithm showed improved performance

in tilt estimation over the traditional centroiding method when considering ex-

tended beacons even when atmospheric turbulence is considered and the correct

(Bose-Einstein) pdf was not used.

• The projection-based cross-correlation algorithm showed improved performance

in tilt estimation over the traditional centroiding method in the presence of

speckle noise. Different models for speckle noise, while statistically correct,

may not accurately model the phenomena in the case being considered.

• While the projection algorithm did outperform the centroid algorithm in all

cases, the difference in performance was not always significant. With this in

mind, and taking into account the computational burden of the projection-based

algorithm, in some cases depending on the conditions the centroiding algorithm

may be all that is required.
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5.3 Recommendations

This section provides recommendations for future work based on this research.

Develop Bose-Einstein MLE Algorithm. Initially a goal of this research, the MLE

algorithm could be developed using the Bose-Einstein statistical distribution for pho-

ton count in speckle images. While this research has shown that the projection-based

method has improved performance over the traditional centroiding method using the

Poisson distribution, it is not the true distribution and the algorithm may show greater

improvement if the correct statistical model where used in the MLE.

Continuation of Speckle Model. More work could be done characterizing the

speckle noise model so it could be propagated in the same manner as the extended

source. Then the algorithms could be further tested and the models merely swapped

in and out of the simulation. The speckle model could also be verified against some

lab tests with hardware.

Real-World Data. The existing simulation could be run again with some real-

world image data and the results compared to the existing simulation data. Real-world

data could be gathered from surfaces of varying degrees of optical roughness and the

performance of the algorithm examined for each surface.
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Appendix A. Matlab Code

This appendix contains all the Matlabr code used in the thesis.

A.1 Parent Code

Listing A.1: The parent file from which all other functions are called.
(appendix1/ParentCodeV11.m)

%% Thesis_simulation_code_V11.m

% Written by FLTLT Brett Monz

4 % 2008

%...

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%...

% Version Development notes:

% V1 - Extended source modelling

% V2 - Added centroiding algorithm and plot or noise vaiance

9 % V3 - corrected error in D aperture diameter now 0.07m

% - added SRI eqn 5.38 Roggemann

% V4 - changed beta =1, s = 0.5 changed code to only claculate ...

psf1 once

% V4A - removed taking real part of fft of extended source

% V5 - added projection vector method code

14 % V6 - added eqn 5:30 from Roggemann

% V6aug21 - corrected code such that projection now performs ...

better than

% centroid with extended source

% V8 - Thesis version

% Changed name to Thesis_simulation_code

19 % V1 - implemented centroid code as function call

% V1a - implemented projection vector method as function call

% V2 - implementing speckle image processing with centroiding NO

% turbulence consideration implemented for speckle

% V3 - implementing speckle image processing for projection NO

24 % turbulence consideration implemented for speckle

% V3A - Initial Image plots formatted for paper/thesis

% V4 - Turbulence Included , now uses speckle_gen2.m function and ...

save_plots

% variable to allow sving to .eps or not

% V4A - test to change dimension of extended source

29 % V5 - added set colour values to specify plot colours for graphs

% V6 - zero tilt phase screens

% V7 - individual phase screen for each realisation

% V8 - use average of 100 images for reference for projection ...

method, also

% requires projection_method2.m

34 % V10 - changed speckle simulation in non turbulent case

% V11 - changed speckle simulation in turbulent case

%...

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%...
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clear all;

close all; clc

39 check_image = true; % set if image display req

%check_image = false; % set if image display not req

%turbulence_included = true; % set to true if turbulence ...

considered and will load phase screen and use correct plot text

turbulence_included = false; % set to false if turbulence not ...

considered and

%will use correct plot text and not load phase screen

44 %save_plots = true; %uncomment to save plots to .eps files

save_plots = false; % uncomment to not save plots to .eps files

darkgreen = [78 136 49]./255; % set colour dark green

maroon = [153 0 102]./255; % set colour maroon

%% initialising

49 if turbulence_included

load Simdata_thesis_1000_tilt_rem % Simdata_thesis%Simdata

end %if turbulence included load individual otfs peviously created

N = 128; %number of aperture pixels

54 D = .07; %aperture diameter in m

P = 64; %pixels in aperture

ro = 0.07; % fried seeing parameter

ua = .75; % atmospheric visibility factor

beta = .5; % angular size of beacon relative to seeing limited ...

angle

59 s = 0.5 ;% normalised shear

speckle_source_dim = 4; % dimension of source for speckle image

images = 1000; % number of images per light level

Kbar = (100:100:1000); % set array of kbar values

speckle_ref_image = zeros (128);

64 proj_ref_image = zeros (128);

phase_slope_centroid_speckle = zeros(1,length(Kbar)); %create ...

array for phase slope values

phase_slope_centroid_noise = zeros(1,length(Kbar)); %create array ...

for phase slope values

sigma_n = zeros(1,length(Kbar)); %create array for tilt error ...

values

69

extended_source = zeros (128 ,128); %

extended_source(64:67,64:67) = ones(4,4);%

Likelihood = zeros (1 ,10);

sigma_n_projection = zeros(1,length(Kbar));

74 sigma_n_centroid_speckle = zeros(1,length(Kbar));

sigma_n_projection_speckle = zeros(1,length(Kbar));

phase_slope_projection = zeros (1 ,100);

phase_slope_projection_speckle = zeros (1 ,100);

79

otf_no_turb = Make_otf(32,0,128,1,zeros (128 ,128)); %make otf ...

without atmospheric turbulence screen
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if turbulence_included

otf1 = otf_array(:,:,1); % choose otf from tilt removed phase ...

screen

84 else

otf1 = otf_no_turb;

end %if turbulence included load phase screen data

% if check_image debug flag set display images

89 if check_image

psf1 = (abs(ifft2((fft2( extended_source)).* otf1)));

psf1_correct_kbar = psf1 * Kbar(5); % set average rxd photon ...

count Kbar

temp=ones(128 ,128)./(ones(128 ,128)+psf1_correct_kbar/2);

speck_image_correct_Kbar = icdf(’nbin’,rand(128 ,128) ,1,temp); ...

% set average rxd photon count Kbar

94

% speck_image = speckle_gen2(speckle_source_dim ,...

turbulence_included ,otf1); % generate speckle image

% %psf1a = fftshift(abs(ifft2(otf1)));

% psf1 = (abs(ifft2((fft2(extended_source)).* otf1)));

99 set(0, ’defaulttextinterpreter’, ’latex’);

f =figure ();

ax2 = axes(’Units’, ’Inches ’, ’OuterPosition’, [0 1 5 5]);

imagesc(psf1 (54:77,54:77));colorbar

colormap(’gray’);

104 cmap = colormap(’gray’);

colormap(flipud(cmap)); % use inverse colormap for printing

grid

xlabel ([’ X Dimension (pixels) ’ ]);

ylabel ([’Y Dimension (pixels)’]);

109

f=figure ();

ax3 = axes(’Units’, ’Inches ’, ’OuterPosition’, [0 1 5 5]);

imagesc( speck_image_correct_Kbar (54:77,54:77));colorbar

colormap(’gray’);

114 cmap = colormap(’gray’);

colormap(flipud(cmap)); % use inverse colormap for printing

grid

xlabel ([’ X Dimension (pixels) ’ ]);

ylabel ([’Y Dimension (pixels)’]);

119 end % if check_image

%% Make Images at "images" light levels

for iloop2 = 1:length(Kbar) % loop for light levels

124

for iloop1 = 1:images % loop through images per light level

iloop1

pause (.1)

if turbulence_included
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129 otf1 = otf_array(:,:,iloop1); % choose otf from tilt ...

removed phase screen

if iloop1 == 1

for iloop3 = 1:images

psf1 = (abs(ifft2((fft2( extended_source)).* ...

otf1)));

psf1_correct_kbar = psf1 * Kbar(iloop2); % set...

average rxd photon count Kbar

134 temp=ones(128 ,128)./(ones (128 ,128)+...

psf1_correct_kbar/2);

speck_image_correct_Kbar = icdf(’nbin’,rand...

(128 ,128) ,1,temp); % set average rxd photon...

count Kbar

speckle_ref_image = speckle_ref_image + (...

speck_image_correct_Kbar)/images;

proj_ref_image = proj_ref_image + (...

psf1_correct_kbar)/images;

139 end % for iloop3

end % if iloop1

else

otf1 = otf_no_turb;

144 proj_ref_image=psf1*Kbar(iloop2);

speckle_ref_image=psf1*Kbar(iloop2);

end %if turbulence included load phase screen data

%psf1a = fftshift(abs(ifft2(otf1)));

psf1 = (abs(ifft2 ((fft2( extended_source)).* otf1)));

149

psf1_correct_kbar = psf1 * Kbar(iloop2); % set average rxd...

photon count Kbar

temp=ones(128 ,128)./(ones(128 ,128)+psf1_correct_kbar/2);

speck_image_correct_Kbar = icdf(’nbin’,rand(128 ,128) ,1,...

temp); % set average rxd photon count Kbar

psf_noise_less = psf1_correct_kbar;

154 Cx_no_noise = centroid(extended_source);% Cx_no_noise = ...

centroid(psf1_correct_kbar);

Cx_no_noise_speckle = centroid(extended_source);% ...

Cx_no_noise_speckle = centroid( speck_image_correct_Kbar)...

;

psf1_correct_kbar_noisy = poissrnd(psf1_correct_kbar); % ...

make noisy

temp=ones(128 ,128)./(ones(128 ,128)+psf1_correct_kbar);

159 speck_image_correct_Kbar_noisy = icdf(’nbin’,rand(128 ,128)...

,1,temp); ; % make noisy

% calculate centroid noisy for extend source

Cx_noise = centroid(psf1_correct_kbar_noisy);

phase_slope_centroid_noise(iloop1)= (Cx_noise -Cx_no_noise)...

*2*pi*P/(N*D); % in rads/m

164
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% calculate centroid noisy for speckle source

Cx_no_noise_speckle = centroid(speck_image_correct_Kbar);

Cx_noise_speckle = centroid(speck_image_correct_Kbar_noisy...

);

169 phase_slope_centroid_speckle(iloop1)= (Cx_noise_speckle - ...

Cx_no_noise)*2*pi*P/(N*D); % in rads/m

% calculate phase slope using projection method

phase_slope_projection(iloop1)= projection_method3(...

psf1_correct_kbar_noisy ,proj_ref_image ,P,N,D);% in rads...

/m

174 phase_slope_projection_speckle (iloop1)= projection_method2...

(speck_image_correct_Kbar ,speckle_ref_image ,P,N,D);% in...

rads/m

end %iloop1

sigma_n(iloop2) = sqrt(sum(( phase_slope_centroid_noise).^2)./...

images);

sigma_n_projection(iloop2) = sqrt(sum(( phase_slope_projection)...

.^2)./ images);

179 sigma_n_centroid_speckle(iloop2) = sqrt(sum((...

phase_slope_centroid_speckle).^2)./images);

sigma_n_projection_speckle(iloop2) = sqrt(sum((...

phase_slope_projection_speckle ).^2)./images);

iloop2

184 end % iloop2

%% plot figure

set(0, ’defaulttextinterpreter’, ’latex’);

f =figure ();

189 ax1 = axes(’Units’, ’Inches ’, ’OuterPosition’, [0 1 5 5]);

plot(ax1 ,Kbar ,sigma_n ,’b--o’);

hold on; grid on;

plot(ax1 ,Kbar ,sigma_n_projection ,’r-.*’);

194 plot(ax1 ,Kbar ,sigma_n_centroid_speckle ,’-.d’,’color’,darkgreen);

plot(ax1 ,Kbar ,sigma_n_projection_speckle ,’-.p’,’color’,maroon);

xlabel ([’ $\bar{K} $ - Average photons received per image ’ ]);

ylabel ([’Tilt Error Due to Noise (rad/m)’]);

199 l2 = legend ([’Centroiding method ’],[’Projection vector method ’],[’...

Centroid method on Speckle’],[’Projection method on Speckle’]);

set(l2, ’location’, ’northeast’,’Fontsize’ ,10 );

if save_plots

if turbulence_included

204 print(’-depsc’, ’Research_tilt_error_turbulence ’);

else
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print(’-depsc’, ’Research_tilt_error_no_turbulence ’);

end %if turbulence_included)

end % if save_plots

209

%save(’Thesis_sim_data_no_turbulence_1000_4x4_ext_source_testing1 ...

’, ’Kbar ’, ’sigma_n ’,’sigma_n_projection ’,’...

sigma_n_centroid_speckle ’,’sigma_n_projection_speckle ’)
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A.2 Make Otf function

Listing A.2: This function computes the Optical transfer Function from the source
to the lens
(appendix1/Makeotf2.m)

function [otf ,aperture] = Make_otf2(r1 ,r2 ,si ,scale ,phase)

% [otf ,apeture] = make_otf(r1 ,r2 ,si ,scale ,phase);

mi = floor(si/2);

5 mi=mi+1;

aperture = zeros(si,si);

for i = 1:si

for j = 1:si

10

dist = sqrt((i-mi)^2+(j-mi)^2);

if(dist <=r1)

if(dist >=r2)

15 aperture(i,j) = 1;

end

end

20 end

end

%% tilt removal section

tx = 2*pi*( -64:63)/128;

25 tx_matrix = ones(128 ,1)*tx;

wvs_x = sum(sum(tx_matrix.*phase .*aperture));

wvs_x = wvs_x/sum(sum(aperture.* tx_matrix.^2));

new_screen = phase - wvs_x*tx_matrix;

%%

30 pupil = aperture.*cos( new_screen) + sqrt(-1)*aperture.*sin(...

new_screen);

psf = real(fft2(pupil).*conj(fft2(pupil)));

psf = scale*psf/sum(sum(psf));

35 otf = fft2(psf);
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A.3 Centroiding Algorithm

Listing A.3: This function computes the centroid of the image sent and returns the
wavefront tilt.
(appendix1/centroid.m)

function[cx]= centroid(image)

% returns centroid (cx) in x dimension only of (image)

% image should have dim 128x128 (not checked)

[posx ,posy] = meshgrid( -12:1:11); % create position array each ...

element value is its delta from center in pixels

5 cx=sum(sum(posx.*image (54:77,54:77)))./sum(sum(image (54:77,54:77))...

);
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A.4 Projection Method Algorithm 2

Listing A.4: This function computes the wavefront tilt using a MLE algorithm with
fractional and integer pixel resoultion.
(appendix1/projectionmethod2.m)

function[ phase_slope]= projection_method2(image ,ref_image ,P,N,D)

% returns phase slope of (image)

% N number of aperture pixels

% D aperture diameter in m

5 % P pixels in aperture

% image should have dim 128x128 (not checked)

% requires makeshift_vec.m to reside in same directory

bvec= -5:.01:5; % vector of pixel locations for linear ...

interpolation

psf11=(image (54:77,54:77)/2);

10 Px = sum(psf11);

Po = sum( ref_image(54:77,54:77)/2);

bindex = 1;

% do linear interpolation

for bloop = -5:.01:5

15 bi = floor(bloop);

bf = bloop -bi;

Pso = makeshift_vec(Po,bi);

Ps1 = makeshift_vec(Po,bi+1);

Pos = (1-bf)*Pso + bf*Ps1;

20

% do likelihood

Likelihood(bindex) = sum(Px.*log(Pos)- Pos);

bindex = bindex +1 ; % update bindex

end%bloop

25 maxLikelihood = max(Likelihood);

dummyval = find(Likelihood == maxLikelihood);

phase_slope= bvec(dummyval)*2*pi*P/(N*D) ;% in rads/m

64



www.manaraa.com

A.5 Projection Method Algorithm 3

Listing A.5: This function computes the wavefront tilt using a MLE algorithm .
(appendix1/projectionmethod3.m)
function[ phase_slope]= projection_method3(image ,ref_image ,P,N,D)

% returns phase slope of (image)

3 % N number of aperture pixels

% D aperture diameter in m

% P pixels in aperture

% image should have dim 128x128 (not checked)

% requires makeshift_vec.m to reside in same directory

8 bvec= -5:.01:5; % vector of pixel locations for linear ...

interpolation

psf11=(image (54:77,54:77)/2);

Px = sum(psf11);

Po = sum( ref_image(54:77,54:77)/2);

bindex = 1;

13 % do linear interpolation

for bloop = -5:.01:5

% bi = floor(bloop);

% bf = bloop -bi;

% Pso = makeshift_vec(Po,bi);

18 % Ps1 = makeshift_vec(Po,bi+1);

Pos = makeshift_vec(Po,bloop);

% do likelihood

Likelihood(bindex) = sum(Px.*log(Pos)- Pos);

23 bindex = bindex +1 ; % update bindex

end%bloop

maxLikelihood = max(Likelihood);

dummyval = find(Likelihood == maxLikelihood);

phase_slope= bvec(dummyval)*2*pi*P/(N*D) ;% in rads/m
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A.6 Vector Linear Shift Algorithm

Listing A.6: This function implements a linear shift of points in a supplied vector.
(appendix1/makeshiftvec.m)
function [img2]= makeshift_vec(img1 ,dx)

% function [img2]= makeshift(img1 ,dx ,dy)

3 % dy and dx are the shifts in the vertical and horizontal ...

directions respectively

% img1 and img2 are the two images from a sequence of video

% delta is the denominator of the fraction of a pixel to which the...

estimation is to be done

% ex 1/10 pixel estimation means delta =10

8 sz=size(img1);

sz=max(max(sz));

center = [floor(sz/(2))+1];

linx = -center +1:1: center -2;

linx = -2*pi*linx/sz;

13 linx = fftshift(linx);

px = cos(linx*dx)+sqrt(-1)*sin(linx*dx);

18 img2 = real(ifft(fft(img1).*(px)));
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A.7 Atmospheric Turbulence Simulation

Listing A.7: This code produces tilt removed phase screen realizations.
(appendix1/PhaseScreen.m)

1 function [screen,deltrho]= PHASE_SCREEN(D,ro,lam1 ,si ,K)

% [screen ]=PHASE_SCREEN(D,ro ,si,K);

%D is the linear dimension in meters corresponding to a square ...

with si pixels on a

%side. Example: You have a wfs aperture of 10 cm and are putting ...

it

% in an array 32 pixels on a size. The array is twice the size of...

the aperture.

6 % then D=.1 and si = 32. ro is Fried ’s seeing parameter in meters...

.

% K is the number of independent phase screens you need to ...

generate.

%on output make sure deltrho is not larger than about 4 ...

millimeters

si1=1024;

11 si2=1024;

deltrho=D/si;

Lo=deltrho*si1/2

ac=zeros(si1 ,si2);

mi1=si1/2+1;

16 mi2=si2/2+1;

for i = 1:si1

i ;

for j = 1:si2

rho = deltrho*sqrt((i-mi1)^2+(j-mi2)^2);

21 ac(i,j)=besselk((5/6) ,(2*pi*(rho)/Lo))*((rho)^(5/6))*(Lo...

/(2*pi))^(5/6);

ac(i,j) =ac(i,j)/((2^(5/6))*gamma (11/6) );

if(rho==0)

ac(i,j)=0;

end

26 end

end

sz=1024;

Cn2dz = ((.185)^(5/3))*(lam1^2)/(ro^(5/3))*10^( -12);

k = 2*pi/(lam1*10^(-6));

31 ac1=ac *.033*(4*pi^2)*k*k*Cn2dz;

ac1=fftshift(ac1);

ac1(1,1)=ac1(1,2);

ft1 = sqrt(abs(fft2(ac1)));

for k=1:K

36 phase = randn(sz,sz);

phase1 = real(ifft2(fft2(phase).*ft1));

screen(:,:,k)=phase1 (1:si ,1:si);

k

pause (.1)

41 end;return
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